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1 Introduction

Probability theory is a branch of mathematics that has had a profound impact on many
fields of study, including statistics, computer science, and physics. At a technical level,
modern probability is typically constructed through measure theory. This is rigorous
and powerful, allowing one to apply the tools of analysis (to great success), but this
analytic back-end can obscure the underlying intuition.

My research in categorical probability applies the tools of category theory to prob-
ability theory, with the goal of providing intuitive and flexible tools for understanding
probabilistic systems. Category theory is a branch of mathematics that focuses on the re-
lationships between mathematical structures, rather than the structures themselves. For
something like a statistical model, this means taking as primary the information/causal
flow between variables, rather than just the final probabilities of events. This is closer
to how practitioners reason about their models, and the categorical setting makes this
precise. Additionally, the categorical setting allows us to treat other probability-like
structures (such as nondeterminism, or “possibility”) in a unified way, by considering
different examples of the same kind of category

I am to develop categorical tools to aid both application of probability to statistical
modelling, as well as to deal with probabilistic constructions categorically. The thrust
of my work has followed three main directions:

e | have worked on formalizing stochastic processes such as Markov chains and hidden
Markov models in a categorical setting, as well as developing tools to perform
Bayesian filtering and smoothing in a categorical framework [FKM™25].

e I have worked on developing a categorical formalism for partially defined stochastic
maps, which can be used to describe processes with nondeterministic outcomes that
may also fail to return a result on certain inputs [SM25].

e [ have worked on developing a categorical formalism for the process of constructing
“relative frequencies” (typically called empirical measures) from a sequence of data
points. Additionally, one can prove a categorical version of the law of large numbers
(and associated results like the Glivenko-Cantelli theorem), a central result in
probability theory which is key to recovering a distribution from data distributed
according to it [FGL™25].



Categorical probability has of late seen growing interest from researchers and practition-
ers of a variety of backgrounds, and I have been fortunate to have been able to collaborate
with mathematicians, computer scientists, and physicists on various aspects of this work
so far. A particular focus of mine has been to unify phenomena from different domains,
and aid the transfer of techniques and understanding between them.

1.1 The categories of interest, informally

Markov categories (and the more general CD categories) are a framework for probabil-
ity theory in a categorical setting. Much of the foundational material on categorical
probability via Markov categories revolves around the idea that the main concepts of
probability theory, such as statistical (in)dependence, determinism, conditioning, etc.,
can be meaningfully extended from categories of Markov kernels to more general Markov
or CD categories.

Definition 1.1 ([CJ19l [Gad96]). A CD category is a symmetric monoidal category
C in which every object X is equipped with a distinguished commutative comonoid
structure copyy: X — X ® X, and delx: X — Z, denoted in string diagram notation

) ]

that is suitably compatible with the tensor product, and such that copy; = delz = idz.

1. Amap f: X — Y is total if it commutes with deletion; that is, if delx f = dely.
These are intuitively the maps that are defined everywhere.

2. A Markov category is a CD category in which every map is total.

3. Amap f: X — Y is copyable if it commutes with copying; that is, if copyy f =
(f ® f) copyx. These are intuitively the maps that have no randomness.

4. A map is deterministic if it is both total and copyable. In practice, these tend
to correspond to some kind of (measurable) function.

Typical examples of Markov categories include categories of measurable spaces and
Markov kernels, such as the category BorelStoch of standard Borel spaces and Markov
kernels, the category FinStoch of finite sets and stochastic matrices, and the category
Gauss of Euclidean spaces and affine maps with Gaussian noise. Additionally, there are
categories where the maps are “possibilistic”, such as the category SetMulti of sets and
multi-valued functions.

2 My work so far

2.1 What structure makes filtering algorithms work?

Hidden Markov models are statistical models used widely in various fields such as sensor
estimation, optimal control, and decision theory. A hidden Markov model can be seen



as modelling the evolution of a system in terms of a Markov chain of “hidden states”,
with only noisy observations being available at each time step. A natural problem when
dealing with hidden Markov models is that of “Bayesian estimation” or “filtering”, which
is to estimate the current state of the “hidden” Markov chain given (the history of) the
observations.

In [FKM™25], we developed the theory of hidden Markov models and the Bayes
filter for Markov categories with conditionals in general. This has the advantage of
simultaneously applying to discrete, continuous, and Gaussian probability. In addition, it
also handles “nonstandard” settings such as possibilistic uncertainty, or probability with
an additional measurable dependence on an external parameter. While in the classical
measure-theoretic setting, our definition corresponds to the familiar notion of hidden
Markov model, in the possibilistic setting it specializes to a form of non-deterministic
state machine. Furthermore it natively integrates the two main ways of thinking about
such models, namely as graphical models or as joint distributions satisfying certain
conditional independence conditions.

Definition 2.1. A state p: T — @),¢[, (Xt ® ¥2) is an n-step hidden Markov model
if there exists a state fo: Z — Xy and sequences of maps f;: X;—1 — X; (the Markov
chain transitions) and g¢: X; — Y; (the observation/emission kernels) such that
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Bayesian filtering and smoothing is about computing certain conditionals.

Theorem 2.2. One can derive recurrence relations for the Bayes filter BFy and smoother
BSY, such as: (if a dashed box denotes the conditional on the wires bent inside it)




Examples 2.3. Our work provides a unified approach to these problems, and our cate-
gorical results specialize to classic constructions that enjoy widespread use. In particular:

e Our recursive algorithm for filtering specializes in BorelStoch to the classical prediction—
update or “forward” algorithm for Bayesian filtering.

e In Gauss, one gets the fast Kalman filter.

e Our smoothing algorithms reduce to the classical forward—backward algorithm in
BorelStoch; and to the faster Rauch—Tung—Striebel smoother in Gauss.

e Additionally, we also recover the fixed-interval smoothing algorithm, which is of
more use practically when smoothing at times far from the end of the data stream.

This was implemented in [SW24] as a proof of concept in C++, formalizing Markov
categories as abstract classes and implementing our constructions and algorithms in
terms of those.

2.2 Why do relative frequencies work?

Many operations one performs in probability theory involve constructions such as limits
or integrals that do not always exist. Even taking the average of a sequence (X;) of
random variables or taking an expectation is not defined in general.

A class of cornerstone results in probability theory involving partially defined oper-
ations are the laws of large numbers. Conceptually, they provide self-consistency to the
idea of a probability measure: Although the actual expectation of a function under an
unknown distribution cannot be inferred from a finite sequence of samples from it, the
average of its values on the first n-samples converges with probability 1 to this expecta-
tion as the number of observations grows. This is why in practice, given a “large” (but
finite!) number of samples, one can reasonably approximate its expectation by the limit
of the average values.

In particular, let f be the indicator function of a measurable set T C X. We would
then have that the relative frequency of the event T in a sequence (x;);cn converges
almost surely to its probability:
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As T varies, one can interpret the fraction on the left as the probability of T under the
empirical measure of the first n elements of the sequence. However the conditions of
the convergence of these empirical measures to p are subtle and in particular can only
be expected to hold for some of the sequences (x;).

In [FGL™25], we formalized this in a categorical setting by developing a framework
for an empirical sampling map, which would intuitively take a sequence of points and
return a (random) sample from the empirical measure of the sequence. However due to
the lack of convergence in general, this map is only “partially” defined, in the sense of
being a map in a CD category that is not total.



To do this, we introduced the notion of quasi-Markov categories, which are intu-
itively the CD categories where each map is total on its “domain”, and simply undefined
outside it. Formally, a quasi-Markov category is a CD category such that every map
satisfies f dom(f) = f, where the domain dom(f) of a map f: X — Y is the map

X

X
Definition 2.4. An empirical sampling map for X is a map es: X~ — X satisfying:

1. Permutation invariance: For every finite permutation ¢ of N, es is invariant
under pre-composition with the corresponding permutation (acting on the indices)
X7: XN 5 XN that is, es X7 = es.

2. Empirical adequacy: Ifamap f: A - XN®Y is exchangeable in the first factor
(that is, (X7 ® idy) f = f holds for every finite permutation o), then we have]l]
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We also constructed such empirical sampling maps in a suitable category of stan-
dard Borel spaces and partially defined Markov kernels between them. Given empirical
sampling maps and a few other assumptions on a quasi-Markov category:

e A representable Markov category has a coherent assignment of objects PX of
“distributions on X7, as well as “sampling maps” sampy: PX — X that intu-
itively draw random samples from a distribution. We constructed distribution
objects such that repeated sampling distinguishes distributions.

e From this, we deduced a version of the de Finetti theorem, showing in this
setting that exchangeable sequences are precisely the mixtures of IID measures.

We then showed a categorical version of the Glivenko—Cantelli theorem, which states
that the empirical measures of an IID sequence converge almost surely to the underlying
distribution.

'We use doubled wires to indicate that the corresponding object is an infinite tensor product, as in
the first output of f.



Theorem 2.5 (Synthetic Glivenko—Cantelli theorem). Consider an arbitrary exchange-
able map f: A — XN and an arbitrary map p: A — X. Then,
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and therefore
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From this, we derived the law of large numbers in the following form, which for a
suitable choice of es reduces to the usual strong law of large numbers.

Corollary 2.6 (Synthetic strong law of large numbers). For arbitrary maps p: [ — X

and m: PX — X,
X

X
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2.3 How do we compose partially defined stochastic operations?

To produce categories with the properties required by |[FGL™25], T developed in the
companion work [SM25] a construction of a quasi-Markov category Partial(C) of
“partially defined stochastic maps” from a suitable Markov category C. This adapts the
construction of partial maps in terms of spans with monic left legs. The novelty here is
that the monoidal structures classically considered are (some variant of) cartesian prod-
ucts, while in the context of categorical probability this cartesian behavior corresponds
to determinism (and cannot be assumed to hold for “stochastic” maps). Furthermore,
I showed that many of the properties of use in the theory of Markov categories transfer
from a partializable Markov category C to its partialization Partial(C).

Definition 2.7. We call a Markov category C partializable if:
1. It is positive (which also implies that all isomorphisms are deterministic);
2. Pullbacks of deterministic monomorphisms exist and are themselves deterministic;
3. Deterministic monomorphisms are closed under tensoring.

Definition 2.8. Given a partializable Markov category C, the quasi-Markov category
of “partial maps in C”, the partialization Partial(C) has:



D.

. Objects those of the original category C;

. Maps X — Y equivalence classes of spans
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with i a deterministic monomorphism;

Composition is done by pullback: For maps represented by spans X & D; i> Y

and Y <& D, % 7
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the composite is represented by X R N/ ;

. Tensoring is done componentwise: For maps X <D I i> Y and X’ <& D, gy,

the tensor is represented by
;8 f®g /
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The CD structure is inherited from C.

The main example of a partializable Markov category is the category BorelStoch of
standard Borel spaces and stochastic maps. The maps X — Y in Partial(BorelStoch)
can be identified with stochastic maps D — Y for a measurable D C X, capturing
the intuition of “partially defined stochastic maps”. Other examples include variants
such as the category FinStoch of finite probability spaces and stochastic maps, Dist and
its variants of discrete measurable spaces and finitely supported stochastic maps in a
suitable semiring, or the category SetMulti of sets and multivalued maps.

Theorems 2.9. For a partializable Markov category C:

1.

2.

The category Partial(C) is a well defined CD category, and is quasi-Markov.

Partial(C) is a restriction category, and the poset enrichment of Partial(C) given by
maps of spans has an equivalent description solely in terms of the CD structure.

Partial(C) is positive.

. Amap X + D Iy of Partial(C) is copyable if and only if f is deterministic.

Partial(C) has conditionals if C does, and they are in a sense defined on the mazimal
possible domain.



6. Partial(C) has Kolmogorov products of size K if C doesE]

7. Idempotents in Partial(C) correspond to idempotents on their domains in C. This
correspondence restricts to a correspondence between split, balanced, strong, and
static idempotents [FGL™ 23, Definition 4.1.1].

In particular, the partialization Partial(BorelStoch) of the category of standard Borel
spaces (with the empirical sampling maps constructed in [FGLT25]) satisfies the require-
ments of the categorical Glivenko—Cantelli theorem and law of large numbers (Theo-

rem and Corollary [2.6).

When C is representable, I showed that the distribution objects and sampling maps
of C serve as distribution objects and sampling maps for Partial(C) as well. Conse-
quently, the distribution functor defines a monad on the subcategory of copyable maps
of Partial(C), and thus we can make sense of partial algebras for this monad. For
instance, on standard Borel spaces, the “expectation map” assigning to a distribution p
on R>q its expectation f x p(dx) is a partial algebra for the Giry monad, with domain
the distributions p such that [z p(dz) is finite.

3 Research Directions

3.1 Extensions and refinements
3.1.1 Tractable filtering algorithms

The algorithms we developed in [FKM™25] for filtering and smoothing are exact, that is
they compute the relevant conditionals precisely. However, in practice, exact computa-
tion is often infeasible, and one resorts to approximate methods. This includes methods
such as particle filters and the Baum—Welch algorithm.

Their ubiquity in practice prompts the question of whether these methods can be
treated categorically as well. In addition to the theoretical interest of understanding
these methods categorically, such a treatment could also help in clarifying and formaliz-
ing the implementations of these algorithms in practice. Indeed, these methods involve
a number of heuristics and design choices, an successful implementation is a matter
of experience as much as theory. A categorical treatment could help in clarifying these
choices, and in particular in understanding the trade-offs involved and guiding the design
of new algorithms.

3.1.2 Partial stochastic map categories

The work [SM25] is merely the first introduction of a general construction of a proba-
bilistically relevant class of quasi-Markov categories, and many further questions arise:

2This is a notion of infinite tensor product particularly suited to categorical probability, and in this
case will be an instance of a restriction limit.



e Many Markov categories of interest are representable, meaning that they are Kleisli
categories of a suitable monad. This suggests the question of whether one can give
sufficient conditions on a commutative affine monad on a symmetric monoidal
category to ensure that the Kleisli category is partializable. In light of the proofs
of the partializability axioms for the main examples, this would likely involve
conditions on the interaction of the monad with pullbacks along monomorphisms,
similar to properties such as tautness.

e On the other hand, many of the results of [SM25] could be extended from the
case where the domain inclusions is the class of deterministic monomorphisms to
general well behaved ones (i.e. suitable stable systems of monomorphisms M). In
the theory of restriction categories, the split restriction categories are essentially
equivalent to the categories of spans Partial(C, M) for a restriction category C and
a stable class of monomorphisms M. This suggests that a sort of classification
result of positive quasi-Markov categories with split domain idempotents may be
possible, along the lines of every positive quasi-Markov category with split domain
idempotents being equivalent to a partialization Partial(C, M). This would addi-
tionally approach a complete characterization of the categories where the treatment
of empirical sampling in [FGL™25] would apply.

3.1.3 Partial algebras and empirical averaging

Our approach to empirical sampling maps and the categorical Glivenko—Cantelli theorem
is just the first categorically, and many extensions and refinements are worth pursuing:

e Even in a measure-theoretic setting, the literature on empirical measures has tradi-
tionally focused on finite sequences, only varying the length as a parameter (with
exceptions, such as [AP14]). This suggests our empirical sampling to be a tool
worthy of study in its own right. Developing the theory of such maps would be
interest to those working with empirical measures of infinite sequences, even in the
measure-theoretic setting.

e On the other hand, [FGL™25| constructs empirical sampling maps explicitly in
Partial(BorelStoch), and the precise construction is technically subtle. Further-
more, the deduction of the standard law of large numbers from the categorical one
involves carefully choosing the right empirical sampling map. This suggests the
investigation of general constructions of classes of empirical sampling maps, and
attempts to characterize categorically which ones lead to the standard law of large
numbers. Alternatively, one could attempt to directly abstracting the notion of
taking the composite of empirical sampling with the expectation, leading to an
“empirical averaging” map from which a categorical strong law of large numbers
could be derived directly.



3.2 New directions
3.2.1 Approximate methods, categorically

Several techniques such as Markov chain Monte Carlo methods, expectation—maximization
algorithms, and variational inference are of practical use in a variety of settings, indepen-
dent of the specific model details. A categorical treatment of such methods would enable
the categorical framework to describe a wider range of algorithms using these techniques
as building blocks. There is plenty of work on Bayesian updating in a categorical setting,
but a categorical treatment of tractable methods for sampling and approximate inference
is still lacking.

3.2.2 Expectations as lax algebras

On standard Borel spaces, the “expectation map” assigning to a distribution p on R its
expectation does not define a partial algebra, even with domain the distributions with
finite first moment. It is only a lax partial algebra, with the multiplication square only
holding up to restriction. To be precise, one composite along the square is defined on the
random distributions with finite first moment such that first moment of the expectations
is finite, while the other is defined on those where the average of the first moments is
finite. And the two are not equal in general.

The ubiquity of expectations in probability theory suggests the question of develop-
ing a general theory of lax partial algebras for the distribution monad. In fact, with
expectations defined in terms of Bochner integrals [Cohl3l Appendix E|, expecta-
tions can be shown to define lax partial algebras for arbitrary separable Banach spaces.
Furthermore, morphisms of these algebras would also have to be lax in a similar sense.
Thus expectations would be objects is a category of lax partial algebras for a distribution
monad and lax morphisms between them, in analogy to the phenomenon in the compact
case with total algebras [Sw74].

3.2.3 Categorical approaches to bootstrapping and (re-)sampling

Laws of large numbers are foundational to developing a wide variety of results in prob-
ability theory. They have proved elusive in categorical probability for some time, but
with versions of them now available, the door is opened to developing further results
relying on them, such as ergodic theorems. Alternatively, this could lead to more practi-
cal results such as a formal treatment of bootstrapping and more general (re-)sampling
methods in Bayesian inference and/or randomized algorithms. Furthermore, issues of
convergence regarding empirical measures are subtle, and the conceptual simplification
afforded by the abstraction of the notion of empirical sampling map would lead to a
clearer understanding of results derived in explicitly in terms of these.
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